Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biosensors (Basel) ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: covidwho-20240819

RESUMO

The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology's current limitations to move forward in this current pandemic and prepare for future outbreaks.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade
2.
PLoS Pathog ; 19(3): e1011240, 2023 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2269790

RESUMO

One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.


Assuntos
COVID-19 , Coronavirus Humano 229E , Células T Matadoras Naturais , Humanos , Animais , Camundongos , Evasão da Resposta Imune , SARS-CoV-2
3.
Front Immunol ; 13: 1007955, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2121831

RESUMO

Gamma-aminobutyric acid (GABA) and GABA-receptors (GABA-Rs) form a major neurotransmitter system in the brain. GABA-Rs are also expressed by 1) cells of the innate and adaptive immune system and act to inhibit their inflammatory activities, and 2) lung epithelial cells and GABA-R agonists/potentiators have been observed to limit acute lung injuries. These biological properties suggest that GABA-R agonists may have potential for treating COVID-19. We previously reported that GABA-R agonist treatments protected mice from severe disease induced by infection with a lethal mouse coronavirus (MHV-1). Because MHV-1 targets different cellular receptors and is biologically distinct from SARS-CoV-2, we sought to test GABA therapy in K18-hACE2 mice which develop severe pneumonitis with high lethality following SARS-CoV-2 infection. We observed that GABA treatment initiated immediately after SARS-CoV-2 infection, or 2 days later near the peak of lung viral load, reduced pneumonitis severity and death rates in K18-hACE2 mice. GABA-treated mice had reduced lung viral loads and displayed shifts in their serum cytokine/chemokine levels that are associated with better outcomes in COVID-19 patients. Thus, GABA-R activation had multiple effects that are also desirable for the treatment of COVID-19. The protective effects of GABA against two very different beta coronaviruses (SARS-CoV-2 and MHV-1) suggest that it may provide a generalizable off-the-shelf therapy to help treat diseases induced by new SARS-CoV-2 variants and novel coronaviruses that evade immune responses and antiviral medications. GABA is inexpensive, safe for human use, and stable at room temperature, making it an attractive candidate for testing in clinical trials. We also discuss the potential of GABA-R agonists for limiting COVID-19-associated neuroinflammation.


Assuntos
Tratamento Farmacológico da COVID-19 , Pneumonia , Camundongos , Humanos , Animais , SARS-CoV-2 , Carga Viral , Ácido gama-Aminobutírico
4.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1890411

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Assuntos
Antivirais , Aspartato Carbamoiltransferase , Tratamento Farmacológico da COVID-19 , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Di-Hidro-Orotase , Inibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aspartato Carbamoiltransferase/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Di-Hidro-Orotase/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Camundongos , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Fator de Transcrição RelA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA